Login  |  Join Us  |  Subscribe to Newsletter
Login to View News Feed and Manage Profile
☰
Login
Join Us
Login to View News Feed and Manage Profile
Agency
Agency
  • Home
  • Information
    • Discussion
    • Articles
    • Whitepapers
    • Use Cases
    • News
    • Contributors
    • Subscribe to Newsletter
  • Courses
    • Data Science & Analytics
    • Statistics and Related Courses
    • Online Data Science Courses
  • Prodigy
    • Prodigy Login
    • Prodigy Find Out More
    • Prodigy Free Services
    • Prodigy Feedback
    • Prodigy T&Cs
  • Awards
    • Contributors Competition
    • Data Science Writer Of The Year
  • Membership
    • Individual
    • Organisational
    • University
    • Associate
    • Affiliate
    • Benefits
    • Membership Fees
    • Join Us
  • Consultancy
    • Professional Services
    • Project Methodology
    • Unlock Your Data
    • Advanced Analytics
  • Resources
    • Big Data Resources
    • Technology Resources
    • Speakers
    • Data Science Jobs Board
    • Member CVs
  • About
    • Contact
    • Data Science Foundation
    • Steering Group
    • Professional Standards
    • Government And Industry
    • Sponsors
    • Supporter
    • Application Form
    • Education
    • Legal Notice
    • Privacy
    • Sitemap
  • Home
  • Information
    • Discussion
    • Articles
    • Whitepapers
    • Use Cases
    • News
    • Contributors
  • Courses
    • Data Science & Analytics
    • Statistics and Related Courses
    • Online Data Science Courses
  • Prodigy
    • Prodigy Login
    • Prodigy Find Out More
    • Prodigy Free Services
    • Prodigy Feedback
    • Prodigy T&Cs
  • Awards
    • Contributors Competition
    • Data Science Writer
  • Membership
    • Individual
    • Organisational
    • University
    • Associate
    • Affiliate
    • Benefits
    • Membership Fees
    • Join Us
  • Consultancy
    • Professional Services
    • Project Methodology
    • Unlock Your Data
    • Advanced Analytics
  • Resources
    • Big Data Resources
    • Technology Resources
    • Speakers
    • Data Science Jobs Board
    • Member CVs
  • About
    • Contact
    • Data Science Foundation
    • Steering Group
    • Professional Standards
    • Government And Industry
    • Sponsors
    • Supporter
    • Application Form
    • Education
    • Legal Notice
    • Privacy
    • Sitemap
  • Subscribe to Newsletter

Detecting Fraud Using Machine Learning

28 February 2020
Amos Uwamusi
Views (1343)
Comments (2)
Author Profile
Other Articles
Follow (2)

Share with your network:

PayPal uses a home-grown artificial intelligence engine to detect suspicious activity and, more importantly, to separate false alarms from true fraud, built with open-source tools. Fraud detection is one of the immediate paybacks of machine learning (ML) technology, because it addresses an urgent problem that would be impractical to solve if machine learning didn't exist.

PayPal is a pioneer in using ML techniques for risk management. PayPal uses three types of machine learning algorithms: linear, neural network, and deep learning. Experience has shown PayPal that in many cases the most effective approach is to use all three at once. PayPal uses multiple ML techniques, from linear predictions to deep learning because, according to the Data Science team at PayPal, although linear techniques might be outdated there may be some tasks at which the linear algorithms work better than the more complex deep learning techniques.

So applying all three at same time has significantly improved the accuracy of the fraud detection system at PayPal. They believe with increasing data, these techniques will be inevitable in the security measures in the future.

References: https://developer.paypal.com/docs/classic/fmf/integrationguide/FMFIntro/

Like (15)
Download

Email a PDF Whitepaper

If you found this Article interesting, why not review the other Articles in our archive.

Login to Comment and Like

Comments:

Balakrishnan Subramanian

11 Apr 2020 02:40:22 PM

Somewhat interesting topic. Need of more explaination. In what way PayPal uses three types of machine learning algorithms?

Abhishek Mishra

25 Apr 2020 10:31:27 AM

PayPal, which had 197 million active customers in 2016 and processed 6.1 billion payment transactions last year - Does it remain same or is there a change

Go to discussion page

Categories

  • Data Science
  • Data Security
  • Analytics
  • Machine Learning
  • Artificial Intelligence
  • Robotics
  • Visualisation
  • Internet of Things
  • People & Leadership
  • Other Topics
  • Top Active Contributors
  • Balakrishnan Subramanian
  • Abhishek Mishra
  • Mayank Tripathi
  • Michael Baron
  • Santosh Kumar
  • Recent Posts
  • New Code of R under COVID-19 outbreak: Reputation, Reliance and Relationship in attracting ‘new enrollments’.
    08 March 2022
  • In Secondary Data We Trust: Secondary Data ‘’Trust’’ Issues
    04 March 2022
  • Get The Best Machine Learning Libraries For Beginners
    06 January 2022
  • Automated machine learning (AutoML)
    05 November 2021
  • Most Liked
  • Cyber Physical Systems
    Likes: 26
    Views: 15643
  • Green Computing: The Future of Computing
    Likes: 23
    Views: 8595
  • Why AI is a great match for your data strategy
    Likes: 18
    Views: 1555
  • Advances in Data Science 2018: Final Speakers & Discussion Themes
    Likes: 16
    Views: 1946
  • Detecting Fraud Using Machine Learning
    Likes: 15
    Views: 1342
To attach files from your computer

    Comment

    You cannot reply to your own comment or question. You can respond to another member's comment in this thread.

    Get in touch

     

    Subscribe to latest Data science Foundation news

    I have read and agree to the Data science Foundation Privacy Policy

    • Home
    • Information
    • Resources
    • Membership
    • Services
    • Legal
    • Privacy
    • Site Map
    • Contact

    © 2022 Data science Foundation. All rights reserved. Data S.F. Limited 09624670

    Site By-Peppersack

    We use cookies

    Cookie Information

    We are using cookies to provide statistics that help us to improve your experience of our site. You can choose to use the site without cookies. However, by continuing to use the site without changing your settings, you are agreeing to our use of cookies.

    Contact Form

    This member is participating in the Prodigy programme. This message will be directed to Prodigy Admin the Prodigy Programme manager. Find out more about Prodigy

    Complete your membership listing and tell others about your interests, experience and qualifications with a Personal Profile page.

    Add a Personal Profile

    Your Personal Profile page is missing information about your experience and qualifications that other members would find interesting. Click here to update.

    Login / Join Us

    Login to your membership account to view your personalised news feed, update your profile, manage your preferences. publish articles and to create a following.

    If you are not a member but work with or have an interest in Data Science, Machine Learning and Artificial Intelligence, join us today.

    Login | Join Us

    Support the work of the Data Science Foundation

    Help to fund our work and enable us to provide free communications and knowledge sharing services to members across the globe.

    Click here to set-up a donation of £30 per year

    Follow

    Login

    Login to follow this member

    Login